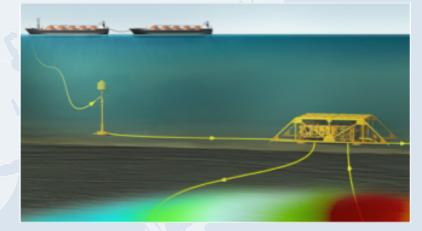
Status CSLF TASK FORCE ON OFFSHORE CO<sub>2</sub>-EOR


### Enabling Large-scale CCS using Offshore CO<sub>2</sub> Utilization and Storage Infrastructure Developments

**Lars Ingolf Eide** 

2<sup>nd</sup> International Workshop on Offshore CO<sub>2</sub> Geologic Storage Beaumont, Texas, USA 19-20 June, 2017

#### Carbon Sequestration leadership Forum www.cslforum.org Purpose of Task Force

- The main purposes of the Task Force were to highlight
  - Main differences between offshore and onshore CO<sub>2</sub>-EOR
  - Issues that are different between offshore CO<sub>2</sub>-EOR and pure offshore CO<sub>2</sub> storage
  - Technical solutions that will benefit both pure offshore CO<sub>2</sub> storage and offshore CO<sub>2</sub>-EOR



Courtesy: AkerSolutions

All based on existing, although not necessarily published, information





- November 2015, Ministerial Meeting of CSLF, Riyadh, Saudi Arabia
  - Offshore CO<sub>2</sub>-EOR selected as topic for a new task force
- CSLF Mid-Year Meeting 2017: Presented draft of final report
- September 2017: Final report ready
- CSLF Annual Meeting 2017: Present final report





**Task Force Members and contributors** 

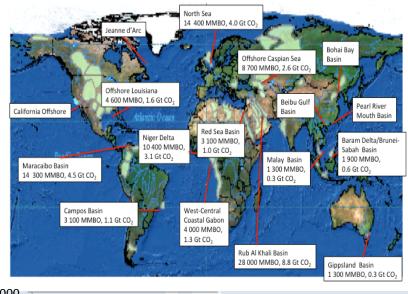
| Member state | Persons                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------|
| Brazil       | Raphael Augusto Mello Vieira                                                                                          |
| Canada       | David Ryan                                                                                                            |
| IEAGHG       | Tim Dixon                                                                                                             |
| Mexico       | Heron Gachuz Muro                                                                                                     |
| Norway       | Philip Ringrose, Sveinung Hagen, Bamshad Nazarian,<br>Arne Graue, Pål Helge Nøkleby, Geir Inge Olsen, Zabia<br>Elamin |
| USA          | Susan Hovorka, Melissa Batum                                                                                          |

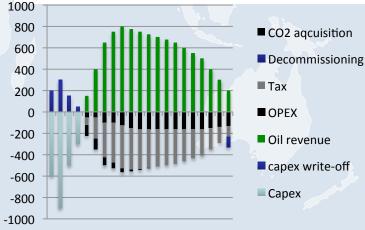


### Report outline and structure (1)

| Chapter title                                                                     | Content                                                                                                                                                  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction                                                                      | Intro. of CSLF, motivation for doing offshore CO <sub>2</sub> -EOR, TF mandate                                                                           |
| Review of offshore CO <sub>2</sub> -<br>EOR storage                               | How CO2-EOR works, differencse onshore vs offshore<br>and EOR vs storage, global potential, economics                                                    |
| Insights from Lula Project                                                        | Reservoir, development strategy, materials, completion, production units/topside facilities, WAG pilot                                                   |
| Approaches for enabling offshore CO <sub>2</sub> -EOR                             | Smart solutions, using late-life infrastucture, using isolated satellite projects, residual oil zone (ROZ), reservoir modelling and numerical simulation |
| Emerging technical<br>solutions for offshore CO <sub>2</sub> -<br>EOR and storage | Topside solutions, subsea solutions, novel technologies, mobility control                                                                                |

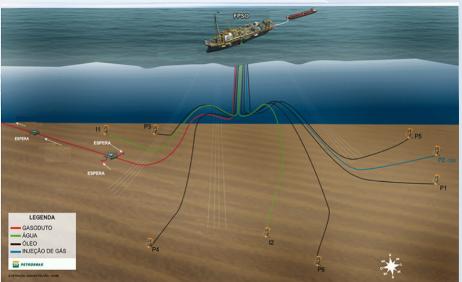



### Report outline and structure (2)


| Chapter title                                                                      | Content                                                                                                                             |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Supply chain issues                                                                | Considerations, pipelines, ships, initiating new systems, case studies                                                              |
| Monitoring, verification<br>and accounting for<br>offshore CO <sub>2</sub> -EOR    | Roles and expectations, EOR vs storage, onshore vs offshore, transitiion from EOR to storage                                        |
| Regulatory requirements<br>for offshore CO <sub>2</sub><br>utilization and storage | Scene-setting, examples of national regulatory requirements, differences EOR and storage, regulations on transtition EOR to storage |
| Summary of barriers                                                                |                                                                                                                                     |
| Recommendations for overcoming barriers                                            |                                                                                                                                     |

## **Potential and economics**

- Potential updated with available sources
  - Incremental oil production: 114000 million bbl
  - Stored CO<sub>2</sub>: ≈41 GT


- Economics
  - Discuss some key parameters
  - Cash flow fictitious example

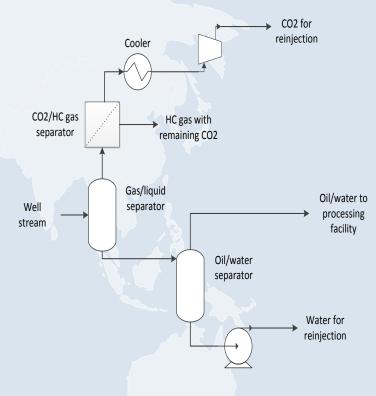




## Lula Project

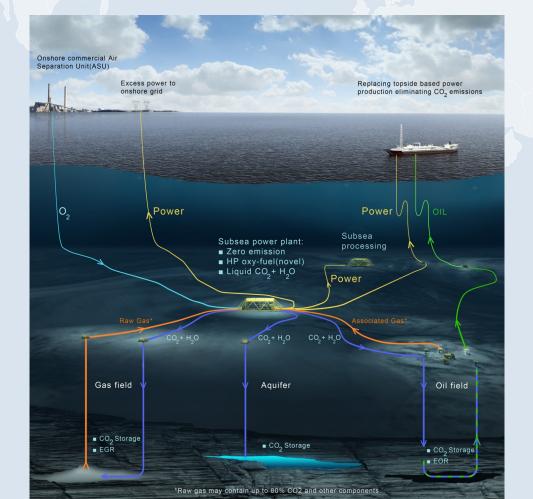
- Reservoir well suited for miscible gas EOR
- $CO_2$  content in gas  $\approx 11 \%$
- Extensive reservoir characterization
- Robust and flexible development strategy
- Careful choice of topside solution and materials
- Membranes used for CO<sub>2</sub> separation
- WAG solution with six producers, two WAG injectors, one CO<sub>2</sub> injector
- No major operational or reservoir problems
- Monitoring with downhole pressure gauges and tracers






- Using late-life oilfield infrastructure
- Using oilfield satellite projects
- Focusing CO-EOR on the residual oil zone (ROZ)
- Reservoir modelling: Issues particular to CO2-EOR
  - Phase behaviour
  - Reactions with rocks
  - Multiphase flow in porous media
  - Oil instability




#### Carbon Sequestration leadership forum www.csliforum.org Emerging technical solutions - Subsea solutions

- Subsea systems could provide an attractive basis for economically feasible offshore CO<sub>2</sub>-EOR gas separation system
- Report
  - Reviews previous solutions
  - Describes and discusses subsea processing building blocks
  - Describes potential new CO2/HC separation technologies
  - Describes alteranative power production



#### **Courtesy Aker Solutions**

## **Carbon Sequextration leadership Forum** Illustration of subsea zero emission offshore power generation and CO<sub>2</sub> separation concept



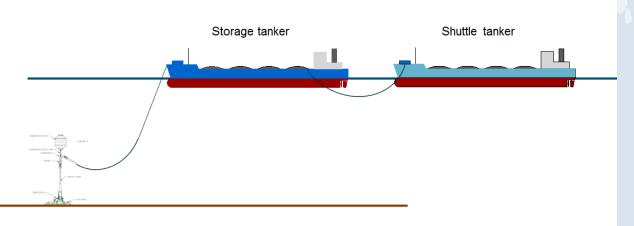
(Courtesy Aker Solutions

## **Carbon Sequextration Leadership Forum** Mobility control (next generation EOR technology)

- CO<sub>2</sub> mobility control important offshore due to large well spacing
- Use increased miscibility oil and CO<sub>2</sub>
- CO<sub>2</sub> foam a potential remedy for fingering etc that reduce volumetric sweep and effectiveness of injection
- Will increase oil recovery as well as CO<sub>2</sub> storage
- International cooperation needed
- Up-scaling from laboratory to onshore and offshore pertains major issue

#### WHY TEXAS?

- CO<sub>2</sub> is commercially available
- Foam as mobility control
- Up-scaling; major challenge in oil recovery
- Fraction of costs of off-shore field tests
- Fast results: short inter-well distances
- 30 years experience in Texas on CO<sub>2</sub> EOR
- 4D seismic establishes a field laboratory




## **Conclusions emerging technologies**

- Significant and promising technologies for reducing the cost of separating CO<sub>2</sub> from production fluids in CO<sub>2</sub>-EOR operations are under development and, to some degree, testing.
- Compact sub-sea equipment for CO<sub>2</sub> processing and mobility control using CO<sub>2</sub> foam appear to have large potential when it comes to reducing CAPEX and OPEX for CO<sub>2</sub>-EOR projects.

## CO<sub>2</sub> supply chain issues

- No technical barriers to CO<sub>2</sub> infrastructure for offshore EOR
- Optimisation will bring costs down
- Some system parts need qualification
- Barriers are commercial and political in nature



Bow to stern loading from shuttle tanker to storage and injection vessel. Possible buoy solution indicated. (Courtesy Aker Solutions)



A network of sources and transportation means to supply Gullfaks with 5.5 MT CO<sub>2</sub>/year. From Elsam (2003)

## MVA

- Offshore CO<sub>2</sub>-EOR is much less mature than onshore CO<sub>2</sub>-EOR and offshore dedicated CO<sub>2</sub> storage
- Will have different risk profiles that require special considerations when designing an MVA programme for offshore CO<sub>2</sub>-EOR.
- A range of monitoring technologies applied in the two other settings are applicable also to offshore CO<sub>2</sub>-EOR.
- The review did not identify any technical barriers for proper monitoring of offshore CO<sub>2</sub>-EOR fields

### **Regulatroy requirements**

- In all regions considered here, it appears that CO<sub>2</sub> EOR activities can be regulated under existing oil and gas regulation
- However, to demonstrate long-term storage, or seeking incentives (such as carbon credits), the same challenges as transitioning from CO<sub>2</sub>-EOR to CO<sub>2</sub> storage onshore are met
- In general, transitional requirements do not exist

## Summary of barriers and recommendations (1)

#### Barrier

#### Recommendation

Access to sufficient and timely supply of CO<sub>2</sub>

Increase the pace in deployment of CCS. A prerequisite for offshore  $CO_2$ -EOR, needs attention at high political level. Slow deployment may lead to missed windows of opportunity for  $CO_2$ -EOR, as the effect of  $CO_2$ -EOR reduces with maturity. There are few, if any, developed sources of  $CO_2$  close to the offshore fields amenable to  $CO_2$ -EOR

Start planning regional hubs and transportation infrastructures for  $CO_2$ . Building the networks will require significant up-front investments and the coordination of stakeholders, including industries, business sectors and authorities that will have to work together. The activities will include  $CO_2$  capture at regional clusters of power and industrial plants, transportation of the  $CO_2$  to hubs and to the individual receiving fields, and injection management

## Summary of barriers and recommendations (2)

| Barrier                                                                                                     | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lack of business<br>models, also for<br>offshore CO <sub>2</sub> -EOR                                       | <b>Develop business models for offshore CO<sub>2</sub>-EOR.</b> Establishing offshore CO <sub>2</sub> networks will create many interdependencies and commercial risks concerning both economics and liabilities. Risk-and cost-sharing will be needed. The literature has a few examples that provide some thoughts, but these need to be matured. The business models must include fiscal incentives, e.g. in term of taxes or tax rebates                      |
| High investment<br>costs, CAPEX and<br>additional<br>operational costs,<br>OPEX; needs for<br>modifications | <b>Support RD&amp;D to develop new technologies.</b> CAPEX and OPEX are significant due to needed modifications and additional equipment on the platforms to separate CO <sub>2</sub> from the produced oil and gas and to make existing wells and pipes resistant to CO <sub>2</sub> corrosion. New technologies can reduce the need for modifications and new equipment, for example better mobility control or sub-surface separation systems. Use of existing |

pipelines may also be a way to keep investment costs down

## Summary of barriers and recommendations (3)

#### Barrier

Lack of regulatory requirements in many jurisdictions, e.g. on monitoring the CO<sub>2</sub> in the underground

#### Recommendation

Continue to develop regulations specific to offshore  $CO_2$ -EOR. Regulations should include monitoring the  $CO_2$  in the underground, both during and particularly after closure and guidelines for when the field transfers into a  $CO_2$  storage site. While not being a barrier in itself, monitoring will require different considerations compared to offshore  $CO_2$ storage and to onshore  $CO_2$ -EOR



Next steps

- Polish document, e.g. with help from professional technical editor
- June 30, 2017: Final review by Task Force
- November 1, 2017: Final report presented to CSLF



## Thank you for the attention!